Math 347H: Fundamental Math (H) Homework 9 Due date: Nov 30 (Thu)

1. Do the following. Include the steps of your calculations.
(a) Write $(230102)_{4}$ in its decimal expansion.
(b) Write $(5.90625)_{10}$ in its binary expansion.

Remark:We didn't really cover the algorithm for conversion of fractional expansions, so part of the challenge of this question is to come up with an algorithm first. It should be a natural extension of the algorithm for natural numbers.
(c) Write (10459) ${ }_{10}$ in hexadecimal (16-ary) expansion using $0,1, \ldots, 9, A, B, C, D, E, F$ as digits.
(d) Write the rational number $\frac{21}{8}$ in its decimal expansion.
(e) Write the rational number $\frac{19}{6}$ in its decimal expansion.
2. Recall the definition of the set of reals \mathbb{R} from your lecture notes and prove directly (without using any other statement proven in class) that (0,1) (and hence also \mathbb{R} itself) is uncountable, using a direct diagonalization argument.
Hint: Supposing towards a contradiction that \mathbb{R} is countable allows for listing the members of $(0,1)$ one below another, which results in a matrix of digits. Looking at the diagonal digits, create a real that is not on that list.
3. The goal of this question is to define addition of two nonnegative reals x, y. For example, $x:=215.69835741 \ldots$ and $y:=6.50293294 \ldots$. Write enough extra 0 s in front of either x or y to make the number of digits before the . equal: $y=006.50293294 \ldots$. Furthermore, write an additional 0 in front of both of them and declare its position as the $0^{\text {th }}$ position:

positions	$:$	0	1	2	3	4	5	6	7	8	9	10	11	\ldots	
x	$=$	\downarrow													
+	2	1	5	.	6	9	8	3	5	7	4	1	\ldots		
y	$=$	0	0	0	6	.	5	0	2	9	3	2	9	4	\ldots
$:=$															
z	$=$	z_{0}	z_{1}	z_{2}	z_{3}	.	z_{4}	z_{5}	z_{6}	z_{7}	z_{8}	z_{9}	z_{10}	z_{11}	\ldots

For each position $i \in \mathbb{N}$, let x_{i} and y_{i} denote the digit in the $i^{\text {th }}$ position of x and y, respectively. Let overflow (x, y, i) denote the least position $j>i$ such that $x_{j}+y_{j} \geq 10$; if such a j does not exist, we let overflow $(x, y, i):=\infty$, declaring the symbol ∞ greater than any natural number. Furthermore, define $\operatorname{carry}(x, y, i):=1$ if for each $j \in \mathbb{N}$ with $i<j<\operatorname{overflow}(x, y, i), x_{j}+y_{j}=9$; otherwise, define carry $(x, y, i):=0$.
(a) For each position $i \in \mathbb{N}$, provide a definition (formula) of z_{i} using carry (x, y, i).
(b) Calculate z for $x:=15.3066666666 \ldots$ (continue with 6 s) and $y:=390.3827355555 \ldots$ (continue with 5 s).
(c) Calculate z for $x:=.4444444444 \ldots$ (continue with 4 s) and $y:=.5555555555 \ldots$ (continue with 5 s).

