Math 347H: Fundamental Math (H) HOMEWORK 9 Due date: Nov 30 (Thu)

- 1. Do the following. Include the steps of your calculations.
 - (a) Write $(230102)_4$ in its decimal expansion.
 - (b) Write $(5.90625)_{10}$ in its binary expansion.

REMARK: We didn't really cover the algorithm for conversion of fractional expansions, so part of the challenge of this question is to come up with an algorithm first. It should be a natural extension of the algorithm for natural numbers.

- (c) Write $(10459)_{10}$ in hexadecimal (16-ary) expansion using $0, 1, \dots, 9, A, B, C, D, E, F$ as digits.
- (d) Write the rational number $\frac{21}{8}$ in its decimal expansion.
- (e) Write the rational number $\frac{19}{6}$ in its decimal expansion.
- 2. Recall the definition of the set of reals \mathbb{R} from your lecture notes and prove directly (without using any other statement proven in class) that (0, 1) (and hence also \mathbb{R} itself) is uncountable, using a direct diagonalization argument.

HINT: Supposing towards a contradiction that \mathbb{R} is countable allows for listing the members of (0, 1) one below another, which results in a matrix of digits. Looking at the diagonal digits, create a real that is not on that list.

3. The goal of this question is to define addition of two nonnegative reals x, y. For example, x := 215.69835741... and y := 6.50293294... Write enough extra 0s in front of either x or y to make the number of digits before the . equal: y = 006.50293294... Furthermore, write an additional 0 in front of both of them and declare its position as the 0th position:

positions	:	0	1	2	3		4	5	6	7	8	9	10	11	
-		\downarrow	\downarrow	\downarrow	\downarrow		\downarrow								
x	=	0	2	1	5	•	6	9	8	3	5	7	4	1	
+															
у	=	0	0	0	6	•	5	0	2	9	3	2	9	4	•••
:=															
Z	=	z_0	z_1	z_2	z_3	•	z_4	z_5	z_6	z_7	z_8	z_9	z_{10}	z_{11}	•••

For each position $i \in \mathbb{N}$, let x_i and y_i denote the digit in the i^{th} position of x and y, respectively. Let overflow(x, y, i) denote the least position j > i such that $x_j + y_j \ge 10$; if such a j does not exist, we let overflow(x, y, i) := ∞ , declaring the symbol ∞ greater than any natural number. Furthermore, define carry(x, y, i) := 1 if for each $j \in \mathbb{N}$ with $i < j < \text{overflow}(x, y, i), x_i + y_i = 9$; otherwise, define carry(x, y, i) := 0.

- (a) For each position $i \in \mathbb{N}$, provide a definition (formula) of z_i using carry(x, y, i).